Metallofullerene nanoparticles circumvent tumor resistance to cisplatin by reactivating endocytosis.

نویسندگان

  • Xing-Jie Liang
  • Huan Meng
  • Yingze Wang
  • Haiyong He
  • Jie Meng
  • Juan Lu
  • Paul C Wang
  • Yuliang Zhao
  • Xueyun Gao
  • Baoyun Sun
  • Chunying Chen
  • Genmei Xing
  • Dingwu Shen
  • Michael M Gottesman
  • Yan Wu
  • Jun-Jie Yin
  • Lee Jia
چکیده

Cisplatin is a chemotherapeutic drug commonly used in clinics. However, acquired resistance confines its application in chemotherapeutics. To overcome the acquired resistance to cisplatin, it is reasoned, based on our previous findings of mediation of cellular responses by [Gd@C(82)(OH)(22)](n) nanoparticles, that [Gd@C(82)(OH)(22)](n) may reverse tumor resistance to cisplatin by reactivating the impaired endocytosis of cisplatin-resistant human prostate cancer (CP-r) cells. Here we report that exposure of the CP-r PC-3-luc cells to cisplatin in the presence of nontoxic [Gd@C(82)(OH)(22)](n) not only decreased the number of surviving CP-r cells but also inhibited growth of the CP-r tumors in athymic nude mice as measured by both optical and MRI. Labeling the CP-r PC-3 cells with transferrin, an endocytotic marker, demonstrated that pretreatment of the CP-r PC-3-luc cells with [Gd@C(82)(OH)(22)](n) enhanced intracellular accumulation of cisplatin and formation of cisplatin-DNA adducts by restoring the defective endocytosis of the CP-r cancer cells. The results suggest that [Gd@C(82)(OH)(22)](n) nanoparticles overcome tumor resistance to cisplatin by increasing its intracellular accumulation through the mechanism of restoring defective endocytosis. The technology can be extended to other challenges related to multidrug resistance often found in cancer treatments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cellular accumulation and cytotoxicity of macromolecular platinum complexes in cisplatin-resistant tumor cells.

The development of resistance is one of the major limitations for the use of platinum (Pt) complexes in cancer chemotherapy. As reduced cellular uptake is a well-known resistance mechanism of cisplatin we explored the potential to overcome resistance in cisplatin-resistant A2780 ovarian carcinoma cells by means of macromolecular prodrugs exploiting endocytosis as alternative uptake mechanism. T...

متن کامل

Sensitization of Resistance Ovarian Cancer Cells to Cisplatin by Biogenic Synthesized Silver Nanoparticles through p53 Activation

Today, drug resistance is one of the major problems in fight against cancer. Therefore, combination of therapeutic strategies was raised to effectively improve disease prognosis. In this regard, silver nanoparticles (AgNPs) are considered significant due to their anticancer properties. This study aimed to return sensitivity to cisplatin to A2780 cisplatin-resistance cell lines in the presence o...

متن کامل

Sensitization of Resistance Ovarian Cancer Cells to Cisplatin by Biogenic Synthesized Silver Nanoparticles through p53 Activation

Today, drug resistance is one of the major problems in fight against cancer. Therefore, combination of therapeutic strategies was raised to effectively improve disease prognosis. In this regard, silver nanoparticles (AgNPs) are considered significant due to their anticancer properties. This study aimed to return sensitivity to cisplatin to A2780 cisplatin-resistance cell lines in the presence o...

متن کامل

CRISPR-Cas9-based target validation for p53-reactivating model compounds

Inactivation of the p53 tumor suppressor by Mdm2 is one of the most frequent events in cancer, so compounds targeting the p53-Mdm2 interaction are promising for cancer therapy. Mechanisms conferring resistance to p53-reactivating compounds are largely unknown. Here we show using CRISPR-Cas9-based target validation in lung and colorectal cancer that the activity of nutlin, which blocks the p53-b...

متن کامل

Enhanced antitumor efficacy of cisplatin for treating ovarian cancer in vitro and in vivo via transferrin binding

Cisplatin is a widely used anticancer drug, while non-targeted delivery, development of drug resistance, and serious side effects significantly limit its clinical use. In order to improve the tumor-targeting properties of cisplatin, transferrin (Tf) was employed as a carrier to transfer cisplatin into cancer cells via transferrin receptor 1 (TfR1) mediated endocytosis. The binding ability of ci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 107 16  شماره 

صفحات  -

تاریخ انتشار 2010